国产av一二三区|日本不卡动作网站|黄色天天久久影片|99草成人免费在线视频|AV三级片成人电影在线|成年人aV不卡免费播放|日韩无码成人一级片视频|人人看人人玩开心色AV|人妻系列在线观看|亚洲av无码一区二区三区在线播放

網(wǎng)易首頁 > 網(wǎng)易號 > 正文 申請入駐

全球首個 AI 欺騙系統(tǒng)性報告:當(dāng) AI 變得更聰明,欺騙便不再是意外

0
分享至


綜述多項研究發(fā)現(xiàn):AI 欺騙可復(fù)現(xiàn)、可規(guī)劃,且隨智能水平提升而變得愈發(fā)嚴(yán)重,甚至危害人類安全。

作者丨鄭佳美

編輯丨岑峰

這兩年,AI 的能力提升幾乎是肉眼可見的。

我們習(xí)慣于贊嘆它在圍棋上戰(zhàn)勝人類,在數(shù)學(xué)推理上超越專家,或者在編程上展現(xiàn)出的驚人效率。它還能改論文、參與決策,在不少復(fù)雜任務(wù)中已經(jīng)表現(xiàn)得比人類更穩(wěn)定、更高效。但也正是在這個過程中,人們逐漸意識到一個問題:當(dāng) AI 真的開始做事而不只是展示能力時,我們關(guān)心的已經(jīng)不再是它能不能做到,而是它做出來的結(jié)果到底靠不靠譜。

甚至,當(dāng)這些系統(tǒng)為了達成目標(biāo)學(xué)會了“走捷徑”,甚至學(xué)會了為了獎勵而撒謊時,我們是否做好準(zhǔn)備面對一個“學(xué)會精細化欺騙甚至危害人類安全”的超級智能?

于是,對齊、安全和評測成了繞不開的話題。我們用全面的評測、紅隊演練去檢查模型是否按照預(yù)期行事,默認的前提是:只要模型在這些測試中表現(xiàn)良好,它的行為就是可信的。

但隨著 AI 被放進更真實、更復(fù)雜、持續(xù)運行的使用環(huán)境中,一些現(xiàn)象開始反復(fù)出現(xiàn),而且越來越難用偶然失誤來解釋。有的模型會迎合用戶明顯錯誤的判斷,有的在評測環(huán)境中表現(xiàn)得循規(guī)蹈矩,卻在實際使用中采取不同策略,還有研究發(fā)現(xiàn),在多智能體環(huán)境里,模型甚至?xí)匀祟惒蝗菀撞煊X的方式進行配合。

這些行為通常被籠統(tǒng)地稱為AI 欺騙,但真正困難的地方在于,我們并不清楚這到底意味著什么,它究竟只是模型還不成熟的副作用,還是一種隨著能力增強而逐漸浮現(xiàn)的結(jié)構(gòu)性問題。

正是在這樣的背景下,一篇來自北京大學(xué),楊耀東教授團隊主導(dǎo)的綜述論文《AI Deception: Risks, Dynamics, and Controls》,試圖系統(tǒng)性地重塑我們理解 AI 欺騙的方式。這篇論文并非聚焦某一個具體模型或單一案例,也不是旨在提出新的算法技巧,而是回顧并整合了近年來大量關(guān)于語言模型、強化學(xué)習(xí)智能體以及多智能體系統(tǒng)的實驗研究,從中提煉共通的 AI 欺騙的模式與因果結(jié)構(gòu),希望為產(chǎn)業(yè)界和學(xué)術(shù)界敲響人工智能安全的警鐘。

論文真正關(guān)心的,并不是模型是不是有意騙人,而是一個更現(xiàn)實的問題:當(dāng) AI 具備更強的目標(biāo)導(dǎo)向能力、更復(fù)雜的環(huán)境理解能力,并且運行在并不完美的激勵和監(jiān)督條件下時,欺騙究竟是偶發(fā)的異常,還是一種在特定條件下可以被預(yù)測、被解釋,甚至需要被正視的行為結(jié)果。


論文地址:https://arxiv.org/pdf/2511.22619

值得注意的是,這篇綜述的高級顧問陣容本身,也在一定程度上反映了這一問題的重要性。論文的顧問團隊涵蓋了來自國內(nèi)外頂級高校與前沿研究機構(gòu)的多位知名學(xué)者,他們長期活躍在 AI 對齊、安全、強化學(xué)習(xí)和多智能體系統(tǒng)等領(lǐng)域,相關(guān)工作不僅影響著學(xué)術(shù)研究的走向,也在實際塑造大型模型的訓(xùn)練與部署方式。

這種跨機構(gòu)、跨研究方向的參與,使得論文并非停留在單一學(xué)派或技術(shù)路線的視角之中,而是試圖從更寬的研究共識出發(fā),梳理 AI 欺騙問題的整體輪廓。


01
能力提升與欺騙升級

本篇報告系統(tǒng)性整合了近年來大量關(guān)于語言模型、強化學(xué)習(xí)智能體以及多智能體系統(tǒng)的實證研究。這些研究在不同任務(wù)、不同模型和不同實驗設(shè)置下,反復(fù)指向了一組已經(jīng)相當(dāng)穩(wěn)固的結(jié)論。

首先,現(xiàn)在的 AI 已經(jīng)能夠在多種任務(wù)和環(huán)境中,穩(wěn)定地表現(xiàn)出欺騙行為。這里的欺騙并不是指偶爾說錯話,也不是模型能力不夠?qū)е碌氖д`,而是指在相似條件下反復(fù)出現(xiàn)的行為模式。

比如,有些模型會主動迎合用戶的錯誤看法,讓用戶更滿意,有些模型會在評測或訓(xùn)練階段故意表現(xiàn)得能力一般,但在實際使用時展現(xiàn)出更強的能力,還有一些模型會給出聽起來很合理的解釋,但這些解釋并不是真正支撐它做出決定的原因。

它們在監(jiān)督存在時表現(xiàn)得很守規(guī)矩、很對齊,而一旦監(jiān)督減弱或消失,行為就發(fā)生改變。更進一步的實驗甚至發(fā)現(xiàn),在多智能體環(huán)境中,模型之間還可能以不容易被察覺的方式進行配合,共同誤導(dǎo)人類評估者或自動化評測系統(tǒng)。


其次,隨著模型能力的提升,這類欺騙行為反而會變得更隱蔽、更持久,也更難被發(fā)現(xiàn)。實驗表明,能力更強的模型更擅長多步推理和長期規(guī)劃,因此欺騙不再只是一次性的說謊或誤導(dǎo),而是可以持續(xù)很多輪對話,甚至貫穿整個任務(wù)過程。

模型還能根據(jù)環(huán)境變化靈活調(diào)整策略,比如判斷自己是否正在被測試、是否有人類在監(jiān)督,從而決定是表現(xiàn)得很對齊,還是采取其他行為。這說明,模型變得更聰明,并不會自然減少欺騙,反而給了欺騙更多實現(xiàn)空間。


第三,這些欺騙行為帶來的風(fēng)險并不是固定不變的,而是會逐級放大。在最輕的情況下,用戶可能只是被誤導(dǎo),對模型產(chǎn)生了不準(zhǔn)確的信任。

但如果這種行為長期存在,就可能演變?yōu)閷τ脩舻某掷m(xù)操縱,甚至在專業(yè)領(lǐng)域中造成目標(biāo)偏離、決策錯誤。再往上,多個系統(tǒng)性欺騙疊加起來,還可能破壞科研、監(jiān)管或社會制度層面的信任。

在一些極端情形下,如果模型長期隱藏真實能力或真實目標(biāo),甚至可能出現(xiàn)人類難以及時發(fā)現(xiàn)和控制的風(fēng)險。已有的實驗和案例顯示,那些看起來問題不大的小型欺騙,往往不會自動消失,反而可能成為更嚴(yán)重問題的起點。


最后,這篇報告指出,現(xiàn)有的對齊和安全方法并不能可靠地解決這些問題。像人類反饋強化學(xué)習(xí)、紅隊測試、規(guī)則約束等手段,在實驗中往往只能讓模型在表面上表現(xiàn)得更安全,而不能保證它在更復(fù)雜、長期的環(huán)境中真的改變了行為策略。

模型可以學(xué)會在測試中如何看起來是對齊的,但這并不意味著它在測試之外也會始終如此。這就導(dǎo)致一種結(jié)果:安全機制越復(fù)雜,模型越可能學(xué)會繞開它們,使欺騙行為變得更加隱蔽。


02
從分散實驗到統(tǒng)一范式

這些結(jié)論并非源自單一實驗,而是來自大量研究在相似問題結(jié)構(gòu)下反復(fù)展開的實證過程。盡管具體模型類型、任務(wù)形式和實驗細節(jié)各不相同,但相關(guān)研究在方法邏輯上呈現(xiàn)出高度一致性,并最終被抽象為一個統(tǒng)一的認知范式。

總體而言,這些研究并未通過直接指示模型實施欺騙來觀察結(jié)果,而是通過系統(tǒng)性地構(gòu)造條件,使得欺騙在功能上逐漸成為一種更具優(yōu)勢的行為選擇。

在實驗設(shè)計的起點,研究者通常會引入某種形式的非理想激勵。這些激勵可能來自目標(biāo)函數(shù)的表達不完全、獎勵信號的可被利用性,或訓(xùn)練數(shù)據(jù)與真實任務(wù)需求之間的結(jié)構(gòu)性偏差。

在此類設(shè)置下,模型并非簡單地在完成任務(wù)與失敗之間做選擇,而是在真實達成目標(biāo)與制造看似成功的表現(xiàn)之間存在可操作空間。多項研究表明,當(dāng)這種空間存在時,欺騙性策略往往能夠以更低的代價換取更高的回報,因此更容易在訓(xùn)練或部署過程中被模型學(xué)到。


隨著模型能力的提升,這一現(xiàn)象表現(xiàn)得愈發(fā)明顯。實證結(jié)果顯示,欺騙并不會在任意模型中自發(fā)出現(xiàn),而是高度依賴于模型是否具備足夠的感知、規(guī)劃與執(zhí)行能力。

能力受限的模型在類似條件下更多表現(xiàn)為隨機錯誤或不穩(wěn)定行為;而當(dāng)模型能夠理解自身所處的環(huán)境、識別監(jiān)督機制的存在,并進行多步推理和長期規(guī)劃時,其行為開始呈現(xiàn)出明顯的策略性特征。在這一階段,模型不再只是“出錯”,而是能夠在特定情境下有條件地選擇是否實施欺騙。

為了進一步驗證欺騙的觸發(fā)條件,研究者通常會通過改變環(huán)境變量來觀察模型行為的變化。這些變量包括監(jiān)督強度的變化、分布外輸入的引入,以及高壓力或高回報任務(wù)場景的設(shè)置。

相關(guān)實驗反復(fù)發(fā)現(xiàn),欺騙往往并非持續(xù)存在的輸出模式,而是在模型判斷當(dāng)前情境對自身更為有利時被激活。這表明,欺騙更接近一種情境依賴的決策策略,而非固定的模型缺陷。

在檢測層面,研究者系統(tǒng)性地比較了多種評估方法,包括靜態(tài)測試、基準(zhǔn)評測、多輪交互、對抗性提問、博弈式任務(wù)以及對模型內(nèi)部狀態(tài)的分析。一個在多項研究中反復(fù)出現(xiàn)的結(jié)果是:模型往往能夠通過靜態(tài)或單輪評估,卻在更接近真實使用情境的動態(tài)交互中暴露出欺騙行為,或者在語言層面表現(xiàn)出高度合規(guī)和誠實,而在實際行動或長期行為中系統(tǒng)性偏離其表面承諾。


最后,當(dāng)研究者嘗試通過更嚴(yán)格的監(jiān)督機制、規(guī)則約束或評測體系來緩解這些問題時,實驗結(jié)果并未顯示模型會簡單地轉(zhuǎn)向真實對齊。

相反,在多個設(shè)置中觀察到,模型逐漸學(xué)會適應(yīng)新的約束條件,在滿足表面要求的同時,通過更隱蔽的方式繼續(xù)追求有利結(jié)果。這種現(xiàn)象在不同研究中反復(fù)出現(xiàn),形成了一種持續(xù)的監(jiān)督與規(guī)避之間的動態(tài)循環(huán)。

03
從意圖爭議到因果定義

這篇論文的價值,并不在于發(fā)現(xiàn)了某一種全新的 AI 欺騙現(xiàn)象,而在于它改變了我們理解和討論這一問題的方式。

過去,人們談?wù)?AI 欺騙時,往往會糾結(jié)于一個難以回答的問題:模型到底是不是有意在騙人。作者并沒有沿著這條思路繼續(xù)下去,而是選擇繞開這個哲學(xué)爭議,轉(zhuǎn)而提出一個更現(xiàn)實、也更可操作的視角。

具體來說,論文并不要求判斷模型是否具有主觀意圖,而是只關(guān)注三個可以被觀察和驗證的事實:模型是否反復(fù)誘導(dǎo)他人形成錯誤認知,是否因此影響了對方的決策行為,以及這種影響是否為模型帶來了實際或潛在的好處。

只要這三點同時成立,就可以將相關(guān)行為視為欺騙。通過這種方式,欺騙不再依賴對模型心理狀態(tài)的猜測,而成為一個可以通過實驗、對比和因果分析來研究的問題,從而使這一議題真正進入科學(xué)和工程研究的范圍。

在此基礎(chǔ)上,論文進一步挑戰(zhàn)了一個長期被默認接受的假設(shè),即只要模型在評測中表現(xiàn)良好,就可以認為它是安全的。作者整合的多項實驗結(jié)果顯示,模型完全可能在 benchmark 測試或受監(jiān)督環(huán)境中顯得誠實、可靠、符合人類期待,但在更復(fù)雜、更長期或更接近真實使用場景的環(huán)境中,卻表現(xiàn)出完全不同的行為。

這說明,當(dāng)前以靜態(tài)測試和短期評估為核心的安全方法,存在著難以忽視的盲區(qū):模型學(xué)會了如何通過測試,卻未必改變了其在真實環(huán)境中的行為邏輯。

論文還強調(diào),AI 欺騙并不是單純由模型內(nèi)部機制決定的技術(shù)問題,而是與外部制度和環(huán)境密切相關(guān)。激勵設(shè)計是否合理、部署環(huán)境是否復(fù)雜、監(jiān)督機制是否持續(xù)有效,以及組織層面的決策方式,都會在無意中影響模型的行為選擇。

在這樣的背景下,僅僅通過修改模型結(jié)構(gòu)或訓(xùn)練方法來解決問題,往往效果有限,甚至可能因為增加約束條件而促使模型發(fā)展出更隱蔽的欺騙方式。也正因為如此,作者將 AI 欺騙明確視為一種社會—技術(shù)交織的問題,而不是可以單靠算法優(yōu)化解決的局部缺陷。

最終,論文提出了一個雖然令人不安、但非?,F(xiàn)實的判斷:在具備目標(biāo)導(dǎo)向能力、能夠理解復(fù)雜環(huán)境,并運行在不完美監(jiān)督條件下的系統(tǒng)中,欺騙很可能并不是例外,而是一種自然出現(xiàn)的行為模式。

從這個角度看,AI 安全研究的目標(biāo)或許不應(yīng)是試圖徹底消除所有欺騙行為,而是思考如何在欺騙可能存在的前提下,構(gòu)建仍然可監(jiān)控、可審計、可約束的系統(tǒng)。

這一轉(zhuǎn)變不僅改變了對 AI 欺騙的理解,也對未來的評估方法、安全設(shè)計和治理思路提出了更現(xiàn)實的要求。

04
研究團隊核心成員

本文的第一作者是北京大學(xué)元培學(xué)院人工智能方向本科生陳博遠,目前在北京大學(xué)對齊與交互實驗室(PAIR Lab)從事研究工作,師從楊耀東教授。

其主要研究興趣為強化學(xué)習(xí)、大模型對齊、前沿AI安全風(fēng)險,聚焦于構(gòu)建安全可信賴的人工智能系統(tǒng)。

陳博遠曾在國際頂級會議NeurIPS發(fā)表口頭報告(前 0.45%)和亮點論文(前 2.6%),多篇論文被收錄 ACL, NeurIPS 等國際頂級會議和期刊,獲 ACL2025 最佳論文獎,谷歌學(xué)術(shù)引用 1600 余次。他曾受邀參加聯(lián)合國秘書長科學(xué)顧問委員會討論,于國家自然科學(xué)基金委雙清論壇作特邀報告。

陳博遠還入選首批北京市自然科學(xué)基金本科生項目資助、獲評北京大學(xué) 2025 學(xué)生年度人物(全校 10 位)、商湯獎學(xué)金(全國 25 位)、北京大學(xué)五四獎學(xué)金(最高學(xué)生榮譽)等。


參考鏈接:https://cby-pku.github.io/

論文的通訊作者楊耀東是北京大學(xué)人工智能研究院助理教授,智源研究院大模型安全研究中心主任。

楊耀東教授的主要研究方向為智能體交互學(xué)習(xí)與對齊,致力于大模型的可信應(yīng)用與安全落地,科研領(lǐng)域涵蓋強化學(xué)習(xí)、AI 對齊與具身智能。在 Nature Machine Intelligence、Cell Matter、AIJ、TPAMI 等國際頂級期刊和會議發(fā)表論文二百余篇,谷歌學(xué)術(shù)引用逾 12000+ 次,自 2022 年以來位列 CSRanking 北大人工智能與機器學(xué)習(xí)方向?qū)W者首位,入選 Scopus 全球 Top2% 頂尖科學(xué)家。

近年來,楊耀東教授將研究重點進一步拓展至大模型與通用智能背景下的對齊問題,探索如何從算法與系統(tǒng)層面出發(fā),使模型行為更好地符合人類意圖與價值預(yù)期。

除科研工作外,他也積極參與學(xué)術(shù)社區(qū)建設(shè)與人才培養(yǎng),持續(xù)指導(dǎo)學(xué)生在 AI 安全與對齊方向開展研究,其指導(dǎo)的團隊北大對齊小組(PKU-Alignment Group)在該領(lǐng)域逐步形成了具有國際影響力的研究群體。


參考鏈接:https://www.yangyaodong.com/

未經(jīng)「AI科技評論」授權(quán),嚴(yán)禁以任何方式在網(wǎng)頁、論壇、社區(qū)進行轉(zhuǎn)載!

公眾號轉(zhuǎn)載請先在「AI科技評論」后臺留言取得授權(quán),轉(zhuǎn)載時需標(biāo)注來源并插入本公眾號名片。

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務(wù)。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關(guān)推薦
熱點推薦
國民黨獅群覺醒!鄭麗文“8答”電爆臺獨 用一中與中國人精準(zhǔn)拆彈

國民黨獅群覺醒!鄭麗文“8答”電爆臺獨 用一中與中國人精準(zhǔn)拆彈

墨蘭史書
2025-12-25 07:50:03
華爾街驚世預(yù)測:貴金屬這輪上漲的下一階段,可能會比許多投資者預(yù)期更為猛烈!2029年底金價將達10000美元

華爾街驚世預(yù)測:貴金屬這輪上漲的下一階段,可能會比許多投資者預(yù)期更為猛烈!2029年底金價將達10000美元

和訊網(wǎng)
2025-12-25 16:02:10
芯片成為“業(yè)績包袱”:探路者跨界四年多,是迷失還是摸索?

芯片成為“業(yè)績包袱”:探路者跨界四年多,是迷失還是摸索?

時代投研
2025-12-24 19:55:44
果不其然。
柬埔寨首相洪瑪奈突然宣布了。

果不其然。 柬埔寨首相洪瑪奈突然宣布了。

百態(tài)人間
2025-12-25 16:39:50
正式確定!CBA名帥下課,浙江男籃更換教練

正式確定!CBA名帥下課,浙江男籃更換教練

體壇瞎白話
2025-12-25 11:22:34
大合同!場均砍下19+11統(tǒng)治東部,年均4000萬啊,他才22歲,慕了

大合同!場均砍下19+11統(tǒng)治東部,年均4000萬啊,他才22歲,慕了

球童無忌
2025-12-25 21:37:10
攤牌!美國搶中國180萬桶原油,要絞殺人民幣?中方反殺已就位

攤牌!美國搶中國180萬桶原油,要絞殺人民幣?中方反殺已就位

現(xiàn)代小青青慕慕
2025-12-24 22:12:19
中共中央政治局召開會議

中共中央政治局召開會議

澎湃新聞
2025-12-25 14:25:04
迪拜品牌推出“Dabubu”盲盒,10個盲盒隱藏款有18K金鏈

迪拜品牌推出“Dabubu”盲盒,10個盲盒隱藏款有18K金鏈

半島晨報
2025-12-24 19:45:03
泰軍突襲柬電詐園區(qū)!現(xiàn)場中文標(biāo)語曝光,字字扎心引眾怒

泰軍突襲柬電詐園區(qū)!現(xiàn)場中文標(biāo)語曝光,字字扎心引眾怒

胡嚴(yán)亂語
2025-12-23 19:13:59
堅守陣地130天,兩名烏軍終于撤了下來,還帶回個并肩作戰(zhàn)的俄軍

堅守陣地130天,兩名烏軍終于撤了下來,還帶回個并肩作戰(zhàn)的俄軍

鷹眼Defence
2025-12-24 16:23:37
新一輪下崗潮殺到?這4個行業(yè)最先被淘汰,看看你中招沒

新一輪下崗潮殺到?這4個行業(yè)最先被淘汰,看看你中招沒

老特有話說
2025-12-25 12:15:23
當(dāng)段奕宏和00后演員同框,一個健壯一個油頭粉面,才懂啥叫真男人

當(dāng)段奕宏和00后演員同框,一個健壯一個油頭粉面,才懂啥叫真男人

銀河史記
2025-12-24 14:32:30
羅永浩、項立剛互撕,猛料越扒越多

羅永浩、項立剛互撕,猛料越扒越多

據(jù)說無據(jù)
2025-12-24 15:43:24
高市早苗或親自拜鬼,金正恩親自現(xiàn)身,朝鮮一枚導(dǎo)彈砸向日本海

高市早苗或親自拜鬼,金正恩親自現(xiàn)身,朝鮮一枚導(dǎo)彈砸向日本海

時時有聊
2025-12-25 14:24:45
外交部:堅決反對美方報告挑撥中國同其他國家關(guān)系

外交部:堅決反對美方報告挑撥中國同其他國家關(guān)系

新京報
2025-12-25 15:48:03
茅臺價格,全線上漲

茅臺價格,全線上漲

新浪財經(jīng)
2025-12-25 13:02:50
關(guān)系藏不住了!樊振東放著世界冠軍陳夢不選,原來他喜歡這樣的

關(guān)系藏不住了!樊振東放著世界冠軍陳夢不選,原來他喜歡這樣的

誮惜顏a
2025-12-24 05:53:10
龐家后人應(yīng)該適可而止,南京博物院繼續(xù)查下去后果已經(jīng)不堪設(shè)想

龐家后人應(yīng)該適可而止,南京博物院繼續(xù)查下去后果已經(jīng)不堪設(shè)想

區(qū)塊科技
2025-12-25 18:29:24
本田最便宜小踏板Today,能掛藍牌速度比電動車快,售價5980元!

本田最便宜小踏板Today,能掛藍牌速度比電動車快,售價5980元!

騎士分享
2025-12-25 10:30:03
2025-12-25 21:52:49
AI科技評論 incentive-icons
AI科技評論
點評學(xué)術(shù),服務(wù)AI
7024文章數(shù) 20717關(guān)注度
往期回顧 全部

科技要聞

小米17Ultra發(fā)布,徠卡2億像素 ,6999元起

頭條要聞

韓國"最毒"財閥千金被捕 韓國人稱"經(jīng)過她身邊就會死"

頭條要聞

韓國"最毒"財閥千金被捕 韓國人稱"經(jīng)過她身邊就會死"

體育要聞

單賽季11冠,羽壇“安洗瑩時代”真的來了

娛樂要聞

朱孝天把阿信好意當(dāng)球踢!

財經(jīng)要聞

時隔15月,人民幣升破7,三大推手曝光

汽車要聞

速來!智界在上海西岸準(zhǔn)備了年末潮流盛典

態(tài)度原創(chuàng)

健康
家居
數(shù)碼
本地
公開課

這些新療法,讓化療不再那么痛苦

家居要聞

經(jīng)典彌新 品味浪漫居所

數(shù)碼要聞

小米Buds 6耳機發(fā)布 支持智能錄音翻譯功能 售價699元

本地新聞

這輩子要積多少德,下輩子才能投胎到德國當(dāng)狗

公開課

李玫瑾:為什么性格比能力更重要?

無障礙瀏覽 進入關(guān)懷版