国产av一二三区|日本不卡动作网站|黄色天天久久影片|99草成人免费在线视频|AV三级片成人电影在线|成年人aV不卡免费播放|日韩无码成人一级片视频|人人看人人玩开心色AV|人妻系列在线观看|亚洲av无码一区二区三区在线播放

網(wǎng)易首頁 > 網(wǎng)易號 > 正文 申請入駐

龔鵬程x斯蒂利亞尼德|走向民族數(shù)學

0
分享至

龔鵬程對話海外學者第一百零六期:在后現(xiàn)代情境中,被技術(shù)統(tǒng)治的人類社會,只有強化交談、重建溝通倫理,才能獲得文化新生的力量。這不是誰的理論,而是每個人都應實踐的活動。龔鵬程先生遊走世界,并曾主持過“世界漢學研究中心”。我們會陸續(xù)推出“龔鵬程對話海外學者”系列文章,請他對話一些學界有意義的靈魂。范圍不局限于漢學,會涉及多種學科。以期深山長谷之水,四面而出。

加布里埃爾·斯蒂利亞尼德教授(Professor Gabriel Stylianides)

牛津大學數(shù)學教育教授,教育系博士研究項目主任。

龔鵬程教授:您好。您的研究真是學生們的福音。您知道的,學數(shù)學,曾是很多地區(qū)學生的共同噩夢。特別是推理證明,很多小孩會感到困難。您認為這該怎么處理?

加布里埃爾·斯蒂利亞尼德教授:龔教授,您好。您講的沒錯,數(shù)學學習對許多兒童來說是困難的。這主要與學校的數(shù)學教學方式有關,傳統(tǒng)上強調(diào)記憶事實和應用程序,而這對學生來說沒有什么意義。這種傳統(tǒng)的數(shù)學教學方式,使學生在學習數(shù)學時感到沮喪:數(shù)學的不同領域,在學生的頭腦中仍然是脫節(jié)的,學生缺乏重要的工具來理解他們所學的數(shù)學。

這就是推理與證明的概念的意義所在。讓學生參與推理和證明,可以把學習數(shù)學從一個令人沮喪的活動變成一個有意義的活動。但讓我解釋一下我所說的推理與證明是什么意思,為什么它很重要。

推理與證明,指的是一系列的活動,這些活動經(jīng)常是數(shù)學中新知識的產(chǎn)生和驗證的一部分:識別模式,提出猜想,并提供論據(jù)和證明來決定是否接受或拒絕猜想。

我所說的"新知識 "是指對某一特定社區(qū)的成員來說是新的知識,例如小學課堂。因此,推理與證明的概念,對所有學生的數(shù)學學習都是相關的和重要的,因為發(fā)展這方面的能力,可以幫助學生理解他們正在學習的數(shù)學,在不同的數(shù)學領域之間建立聯(lián)系,并發(fā)展一些技能,使他們不僅能夠發(fā)現(xiàn)新的(對他們來說)數(shù)學知識,而且能夠不依賴教師或教科書的權(quán)威,來決定其有效性。

但遺憾的是,推理與證明在日常數(shù)學實踐中很少受到關注,這就使學生不僅失去了將數(shù)學作為一種感性活動來參與的寶貴機會,也失去了發(fā)展推理與證明能力的機會,因此會覺得的推理與證明有難度。

我們有大量的證據(jù)表明,在支持性的課堂環(huán)境中,即使是幼兒也能成功地進行推理和證明。我的研究的很大一部分集中在如何幫助支持大量的教師成功地讓他們的學生了解推理和證明的關鍵要素。

You are right in saying that children’s learning of mathematics has been difficult for many students. This has mostly to do with the way in which mathematics has been taught in schools and the traditional emphasis on memorization of facts and application of procedures that make little sense to students. This traditional way of teaching mathematics has made learning mathematics frustrating for students: the different areas of mathematics remain disconnected in students’ minds and students are lacking important tools to make sense of the mathematics they are learning.

This is where the notion of reasoning-and-proving becomes relevant. Engaging students in reasoning-and-proving can help turn learning mathematics from a frustrating to asense-making activity. But let me explain what I mean by reasoning-and-proving and why it is important.

Reasoning-and-proving refers to a family of activities that are frequently part of the generation and validation of new knowledge in mathematics: identifying patterns, making conjectures, and providing arguments and proofs to decide whether to accept or reject the conjectures. By ‘new knowledge’ I refer to knowledge that is new to the members of a particular community, such as an elementary school classroom. So the notion of reasoning-and-proving is relevant and important for all students’ learning of mathematics as developing competency in this area can help students make sense of the mathematics they are learning, make connections between different areas of mathematics, and develop skills that will allow them to not only discover new (for them) mathematical knowledge but also decide on its validity without relying on the authority of the teacher or the textbook.

Unfortunately, though, reasoning-and-proving has received little attention in everyday mathematics practice, and this deprives students of valuable opportunities not only to engage in mathematics as a sense-making activity but also to develop competency in reasoning-and-proving thus finding reasoning-and-proving difficult. We have a wealth of evidence that, in supportive classroom environments, even young children can successfully engage in reasoning-and-proving. A big part of my research focuses on ways in which we can help support large numbers of teachers to successfully engage their students in key aspects of reasoning-and-proving.

龔鵬程教授:大學領域的數(shù)學教育研究,當與中小學教師在實際課堂上碰到的問題不同,請問,您們現(xiàn)在研究些什么呢?

加布里埃爾·斯蒂利亞尼德教授:中小學教師遇到的一些問題與大學教師遇到的問題不同,有些則類似。當我在前面說推理與證明的概念對所有學生的數(shù)學學習都很重要時,這并不限于中小學學生,它也適用于大學生。

盡管不同的學生群體需要有針對性的教學支持,但中小學生和大學生在推理與證明方面所面臨的許多困難是相同的。事實上,教師和大學導師都需要幫助,以成功地讓他們的學生參與推理和證明。這種幫助可以包括發(fā)展他們自己關于推理和證明的知識的方法,適合他們與學生一起開展的實現(xiàn)特定學習目標的活動,以及開展這些活動的適當方法。

在過去近二十年中,我在所有這些領域都進行了合作研究。我目前參與的項目有兩個。第一個項目是由約翰·費爾資助的,重點是中學階段,與劍橋大學合作進行研究。第二個項目由教育捐贈基金會資助,側(cè)重于小學階段,與我在牛津大學的同事共同進行。

這兩個項目都旨在開發(fā)以理論為基礎、以實踐為導向的模式,以幫助擴大與推理和證明有關的干預措施,我們發(fā)現(xiàn)這些干預措施在我們先前研究中的當?shù)乇尘跋率怯行У摹?/p>

Some problems encountered by teachers at the school level are different and some are similar to those encountered by instructors at the university level.When I said earlier that the notion of reasoning-and-proving is important for all students’ learning of mathematics, this was not restricted to school students; it applies to university students as well. Although different groups of students need tailored instructional support, many of the difficulties that school and university students face with reasoning-and-proving are the same. Indeed, both teachers and university instructors need help to successfully engage their students in reasoning-and-proving. This help can include ways to develop their own knowledge about reasoning-and-proving, activities that are suitable for them to implement with their students to achieve specific learning goals, and appropriate ways to implement those activities.

I have conducted collaborative research in all of these areas over almost the last two decades. I have two projects I am involved currently. The first project is funded by John Fell, focuses on the secondary school level, and is conducted together with the University of Cambridge. The second project is funded by the Education Endowment Foundation, focuses on the primary school level, and is conducted together with my colleague at Oxford. Both projects aim to develop theory-based and practice-oriented models that can help scale up interventions related to reasoning-and-proving that we found to be effective in the local contexts of our prior research studies.

龔鵬程教授:數(shù)學的推理證明,主要在幾何部分嗎?它如何延伸到生活場域或哲學思考?

加布里埃爾·斯蒂利亞尼德教授:推理與證明適用于數(shù)學的所有領域,而不僅僅是幾何學。許多人把推理與證明與幾何聯(lián)系起來,因為在傳統(tǒng)上,這一概念幾乎只在中學幾何的背景下受到關注,并側(cè)重于證明的發(fā)展,而不是推理與證明的所有方面(識別模式,提出猜想等)。

讓我們考慮一個基于實際課堂事件的課堂情景,以說明幼兒在非幾何背景下參與推理與證明會是什么樣子。

想象一下,二年級的學生(6-7歲)正在研究兩個奇數(shù)相加會發(fā)生什么。他們檢查了幾個例子,并注意到一個規(guī)律,即在他們檢查的所有情況下,總和是一個偶數(shù)。這讓學生們猜想,他們注意到的模式是否會擴展到所有的奇數(shù)對。不過,奇數(shù)是無限的,所以他們無法檢查每一對奇數(shù)。但學生們有了推理這種情況所需的工具,老師可以幫助他們。為了證明任何兩個奇數(shù)之和是偶數(shù),學生不需要使用代數(shù)。例如,教師可以幫助學生將奇數(shù)表示為兩組的瓦片,都有一塊瓦片剩余,而將偶數(shù)表示為兩組的瓦片,都沒有剩余。當兩個奇數(shù)相加時,剩下的兩塊瓷磚可以組合在一起,組成一個偶數(shù)。

我希望這個例子能讓您了解在非幾何學背景下,幼兒參與推理和證明的情況是怎樣的。此外,這個例子還說明了這種參與可以幫助學生深入理解他們所研究的數(shù)學思想,在本例中就是偶數(shù)和奇數(shù)的屬性。

Reasoning-and-proving applies toall areas of mathematics, not only geometry. Many people associate reasoning-and-proving with geometry because, traditionally, this notion received attention almost exclusively in the context of secondary school geometry and with a focus on the development of proofs, out of all the aspects that comprise reasoning-and-proving (identifying patterns, making conjectures, etc.). Let us consider a classroom scenario, which is based on actual classroom events, to illustrate what young children’s engagement with all aspects of reasoning-and-proving can look like and in a non-geometric context.

Imagine the students in a Year 2 classroom (6–7-year-olds) investigating what happens when they add two odd numbers. They check several examples and notice the pattern that, in all the cases they checked, the sum is an even number. This makes the students conjecture whether the pattern they noticed will extend to all pairs of odd numbers. After all, there are infinite odd numbers, so they cannot check every single pair. But the students have the tools they need to reason about this situation and the teacher can help them with that. In order to prove that the sum of any two odd numbers is an even number, students do not need to use algebra. For example, the teacher can help the students represent odd numbers as tiles of groups of two with one left over and even numbers as tiles of groups of two with none left over. When two odd numbers are added together, the two left over tiles can be grouped together and make an even number.

I hope that this example gives you an image of what young children’s engagement in reasoning-and-proving can look like in a non-geometric context. Also, the example illustrates how this engagement can help students develop a deep understanding of the mathematical ideas they investigate, in this case properties of even and odd numbers.

龔鵬程教授:不同種族,對于數(shù)學學習會有什么差別嗎?歷史上,中國、印度、阿拉伯似乎都較精于算數(shù),幾何學的發(fā)展則不如或晚于希臘。

加布里埃爾·斯蒂利亞尼德教授:東亞國家在國際數(shù)學比較中經(jīng)常表現(xiàn)優(yōu)異,例如在2019年TIMSS(國際數(shù)學和科學趨勢研究)中,五個東亞國家在四年級和八年級的數(shù)學測試中都以很大的優(yōu)勢超過了其他約50個國家。

這種一貫的表現(xiàn)模式并非巧合,但作為一個領域,我們?nèi)杂幸欢温芬撸猿浞至私鈻|亞國家的成功可能有哪些文化或其他因素,以及這些因素如何幫助其他國家的數(shù)學教育。

一般來說,數(shù)學和文化(廣義上包括社會中任何可識別的文化群體)之間的關系是復雜的,在數(shù)學教育中有一個完整的研究領域,稱為民族數(shù)學,它探討的是這個問題。民族數(shù)學概念導致了大量的數(shù)學教育工作和研究視角的發(fā)展,這些研究對數(shù)學教學和學習環(huán)境的社會、文化和歷史特征非常敏感。

You are raising an important issue that falls outside of my main line of research or area of expertise in mathematics education. East Asian countries are frequently top performers in international mathematical comparisons, such as in the 2019 TIMSS (Trends in International Mathematics and Science Study) where five East Asian countries outperformed about 50 other countries by substantial margins in both the fourth- and eighth-grade mathematics tests. This consistent pattern in performance is not a coincidence but, as a field, we still have a way to go to fully understand what cultural or other factors might account for East Asian countries’ success and how these factors might help inform mathematics education in other countries. In general, the relationship between mathematics and culture (broadly conceived to include any identifiable cultural group within the society) is complex and there is a whole field of study in mathematics education, calledethnomathematics, which investigates that. Ethnomathematics has led to a large body of work in mathematics education and the development of research perspectives which are sensitive to social, cultural, and historical characteristics of the contexts where the teaching and learning of mathematics takes place.

龔鵬程,1956年生于臺北,臺灣師范大學博士,當代著名學者和思想家。著作已出版一百五十多本。

辦有大學、出版社、雜志社、書院等,并規(guī)劃城市建設、主題園區(qū)等多處。講學于世界各地。并在北京、上海、杭州、臺北、巴黎、日本、澳門等地舉辦過書法展?,F(xiàn)為中國孔子博物館名譽館長、臺灣國立東華大學終身榮譽教授、美國龔鵬程基金會主席。

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關推薦
熱點推薦
英媒:伊勞拉想讓塞門約出戰(zhàn)槍手和熱刺,但球員想直接加盟曼城

英媒:伊勞拉想讓塞門約出戰(zhàn)槍手和熱刺,但球員想直接加盟曼城

懂球帝
2026-01-02 23:57:09
“最快女護士”張水華宣布辭職:感謝醫(yī)院的培養(yǎng)和同事們的包容!前一天首場馬拉松破紀錄奪冠,獲1.5萬元總獎金

“最快女護士”張水華宣布辭職:感謝醫(yī)院的培養(yǎng)和同事們的包容!前一天首場馬拉松破紀錄奪冠,獲1.5萬元總獎金

每日經(jīng)濟新聞
2026-01-02 22:46:06
寶馬31款車型開年降價,最高降30.1萬元

寶馬31款車型開年降價,最高降30.1萬元

新京報
2026-01-02 23:18:23
馬云預言成真了?從2026年開始,樓市可能迎來“4大變化”?

馬云預言成真了?從2026年開始,樓市可能迎來“4大變化”?

平說財經(jīng)
2026-01-01 22:35:32
貪財風流、嗜酒如命,香港樂壇一代鬼才,2000多首歌撐起整個武林

貪財風流、嗜酒如命,香港樂壇一代鬼才,2000多首歌撐起整個武林

慕姑娘的讀行生活
2025-12-13 07:00:07
曝永州隊員對美女老板很氣憤:就是賭我們贏不了 律師:沒法告她

曝永州隊員對美女老板很氣憤:就是賭我們贏不了 律師:沒法告她

風過鄉(xiāng)
2026-01-02 08:27:19
這和“真空”有啥區(qū)別,章子怡大膽穿衣,卻沒贏過保守的蔣勤勤

這和“真空”有啥區(qū)別,章子怡大膽穿衣,卻沒贏過保守的蔣勤勤

黃小仙的搞笑視頻
2025-12-27 16:10:37
1400萬人次用腳投票!2026跨年夜,為何是廣州?

1400萬人次用腳投票!2026跨年夜,為何是廣州?

特特農(nóng)村生活
2026-01-02 14:44:52
農(nóng)家女實名舉報浙江千島湖鎮(zhèn)東莊村換屆選舉涉嫌違法亂紀

農(nóng)家女實名舉報浙江千島湖鎮(zhèn)東莊村換屆選舉涉嫌違法亂紀

劉福國工作室
2026-01-02 21:31:49
馬筱梅透露不在臺買房原因,不讓玥兒箖箖回北京有苦衷

馬筱梅透露不在臺買房原因,不讓玥兒箖箖回北京有苦衷

大眼妹妹
2026-01-02 23:17:50
年齡越大越要少吃菜?醫(yī)生建議:年過65歲,盡量避免5種減壽行為

年齡越大越要少吃菜?醫(yī)生建議:年過65歲,盡量避免5種減壽行為

看世界的人
2026-01-02 15:48:40
一上午檢查11人,全部確診癌癥晚期!不少人活不過5年…有夫妻雙雙患病,跟這習慣密切相關

一上午檢查11人,全部確診癌癥晚期!不少人活不過5年…有夫妻雙雙患病,跟這習慣密切相關

犀利辣椒
2026-01-01 06:41:02
續(xù)航滅霸!新機官宣:1月5日,全新發(fā)布登場!

續(xù)航滅霸!新機官宣:1月5日,全新發(fā)布登場!

科技堡壘
2026-01-02 12:17:04
解放軍逼近臺島4.7海里,蔣萬安嚴厲譴責,鄭麗文的回應語出驚人

解放軍逼近臺島4.7海里,蔣萬安嚴厲譴責,鄭麗文的回應語出驚人

尋途
2025-12-30 14:55:42
養(yǎng)老金剛漲2%,人社部又公布3個關鍵數(shù)據(jù):明年還能繼續(xù)漲嗎?

養(yǎng)老金剛漲2%,人社部又公布3個關鍵數(shù)據(jù):明年還能繼續(xù)漲嗎?

搬磚營Z
2026-01-03 05:25:34
CBA第九輪排名!浙京粵霸占前3,山西遼寧暴跌,7-15全4勝混戰(zhàn)!

CBA第九輪排名!浙京粵霸占前3,山西遼寧暴跌,7-15全4勝混戰(zhàn)!

細話籃球
2026-01-03 01:23:28
志愿軍功臣隱姓埋名當農(nóng)民,55 年授銜漏評,朱德上報毛主席

志愿軍功臣隱姓埋名當農(nóng)民,55 年授銜漏評,朱德上報毛主席

磊子講史
2025-12-25 16:36:00
哭倒在女記者懷中?湖人男球迷身份曝光

哭倒在女記者懷中?湖人男球迷身份曝光

天光破云來
2026-01-02 12:29:26
2026國補大調(diào)整!這些舊家電身價暴漲,別再當廢品賣了

2026國補大調(diào)整!這些舊家電身價暴漲,別再當廢品賣了

老特有話說
2025-12-31 23:25:58
看懂抗美援朝,也就懂了伊朗總統(tǒng)萊希死后,中國為啥在臺海掀桌子

看懂抗美援朝,也就懂了伊朗總統(tǒng)萊希死后,中國為啥在臺海掀桌子

聽風行江湖
2026-01-03 03:50:34
2026-01-03 07:07:00
藝術(shù)文化生活
藝術(shù)文化生活
弘揚中華傳統(tǒng)文化
341文章數(shù) 732關注度
往期回顧 全部

教育要聞

中小學書記校長首先是師者

頭條要聞

民調(diào)稱25%臺灣人愿上戰(zhàn)場 呂秀蓮:圍臺軍演后數(shù)據(jù)更低

頭條要聞

民調(diào)稱25%臺灣人愿上戰(zhàn)場 呂秀蓮:圍臺軍演后數(shù)據(jù)更低

體育要聞

快船似乎又行了

娛樂要聞

田亮一家新年全家福!森碟變清純少女

財經(jīng)要聞

車企2026開年大促 含16個品牌近70款

科技要聞

新勢力年榜:零跑險勝華為,蔚來小鵬新高

汽車要聞

方程豹全年銷量超23.4萬輛 同比暴增316.1%

態(tài)度原創(chuàng)

本地
游戲
數(shù)碼
房產(chǎn)
公開課

本地新聞

即將過去的2025年,對重慶的影響竟然如此深遠

玩家流失95%!《師父》開發(fā)商新作狀況不佳

數(shù)碼要聞

手機+充電寶=全鍵盤滑蓋手機,Clicks推出新形態(tài)配件

房產(chǎn)要聞

海大譽府新年家年華暨2號樓耀世加推發(fā)布會圓滿落幕

公開課

李玫瑾:為什么性格比能力更重要?

無障礙瀏覽 進入關懷版